Chapter 6 Multiview Projection Day 2 Lecture- Notes

Adjacent Areas

(a)

(d)

- Consider figure (a), it is showing the top view of all figures, b-f, yet all the figures are \qquad -.
- Since an area (surface) in a view can be interpreted in several different ways, other views must be observed to determine which interpretation is correct.
- Each area, (A, B, C) represents a surface at a different \qquad .
- No two \qquad can lie in the \qquad .
Similar Shapes of Surfaces

- A surface viewed from several different positions, will have certain number of \qquad
- An L-shaped surface will appear as an L-shaped figure \qquad
- This repetition of shapes is one of the best methods for analyzing views.

Normal Surfaces and Edges

FIGURE 6.24 Machining a Tool Block-Normal Surfaces and Edges.

- A normal surface \qquad . It appears in \qquad and \qquad on the plane to which it is
\qquad , and as a vertical or horizontal line on adjacent planes of projection.
- Walk yourself through the steps of the object and how the drawings change as the object is modified.
- Are the faces shown in each projection, true shape and size?
- A \qquad is a line that is perpendicular to the plane of projection.
It appears as a \qquad on the plane of projection to which it is \qquad and as a
\qquad in true length on adjacent planes of projection.
- Look at Figure 6.24, I above. Edge D, is perpendicular to the profile plane of projection and appears as point \# \qquad in the side view. It is parallel to the \qquad and \qquad of projection and is shown true length at \#'s \qquad in the front view and \#'s \qquad in the top view.

Inclined Surfaces and Edges

- An inclined surface is \qquad
- An inclined surface projects as a straight line on the plane to which it is \qquad . It appears foreshortened (FS) on planes to which it is \qquad , with the degree of foreshortening being \qquad —.
- Figure 6.25 above, shows four stages in machining a locating finger, producing several inclined surfaces.
- Notice in Fig. I, surface A, is more foreshortened in the right side view than in the front view because the plane \qquad
- Notice how in Fig. 6.25IV, in the top view, shown as a visible surface, 1-21-22-5-18 and in the side view as an invisible surface \#'s \qquad , while the surface does not appear in true size in any view, it does have \qquad
- To obtain the \qquad of an inclined surface it is necessary to construct an \qquad
- An \qquad edge is a line that is parallel to a plane of projection but inclined to adjacent planes. It appears true length on the plane to which \qquad
- See inclined edge B, in Figure I, it is \qquad in the top view, and \qquad in the Front and Right side view.

Oblique Surfaces and Edges

- An oblique surface is a \qquad . Since it is not perpendicular to any plane, it cannot appear as a \qquad in any view. Since it is not parallel to any plane, it cannot appear \qquad in any view. Thus, an oblique surface always appears as \qquad surface in all three views.

FIGURE 6.26
Machining a Control Lever-Inclined and Oblique Surfaces.

- In Figure 6.26II above, oblique surface C, appears in the top view at 25-3-6-26, and in the front view at 29-8-31-30. What is its numbering in the side view?
- To obtain the true size of this oblique surface, or any other, it is necessary to construct \qquad
- An oblique edge is a line that is \qquad to all planes of projection. Since it is not to any plane, it cannot appear as a point in any view. Since it is not
\qquad to any plane, it cannot appear true length in any view. An oblique edge appears in every view.
- See Fig 6.26II, oblique edge F appears in the top view at \#'s \qquad , in the front view at \#' \qquad , and in the side view at \#'s \qquad .

